454 research outputs found

    Database of multiparametric geophysical data from the TOMO-DEC experiment on Deception Island, Antarctica

    Get PDF
    We are grateful to the officers and crew of the Spanish vessels 'R/V Hesperides' and 'R/V Las Palmas', the personnel of the Marine Technology Unit (UTM), the military personnel of the 'Gabriel de Castilla' Spanish base, and the members of the TOMODEC Working Group. This manuscript has been partially funded by the following research projects: the Spanish project TEC2015-68752-R (MINECO/FEDER); KNOWAVES; the Spanish Education and Research Ministry grants REN 2001-3833, CGL2005-05789-C02-02/ANT, POL2006-08663, and CGL2008-01660; the U.S. National Science Foundation grant ANT-0230094; the European project MED-SUV funded by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement No 308665; the European project EPOS; the European Union's Horizon 2020 research and innovation programme under grant agreement No 676564; and the U.S. National Science Foundation grant NSF-1521855 Hazard SEES project. Ocean bottom seismometers were provided by the U.S National Oceanographic Instrument Pool. This publication reflects only the authors' views. The European Commission is not responsible for any use that may be made of the information it contains.Deception Island volcano (Antarctica) is one of the most closely monitored and studied volcanoes on the region. In January 2005, a multi-parametric international experiment was conducted that encompassed both Deception Island and its surrounding waters. We performed this experiment from aboard the Spanish oceanographic vessel 'Hesperides', and from five land-based locations on Deception Island (the Spanish scientific Antarctic base 'Gabriel de Castilla' and four temporary camps). This experiment allowed us to record active seismic signals using a large network of seismic stations that were deployed both on land and on the seafloor. In addition, other geophysical data were acquired, including bathymetric high precision multi-beam data, and gravimetric and magnetic profiles. To date, the seismic and bathymetric data have been analysed but the magnetic and gravimetric data have not. We provide P-wave arrival-time picks and seismic tomography results in velocity and attenuation. In this manuscript, we describe the main characteristics of the experiment, the instruments, the data, and the repositories from which data and information can be obtained.MINECO/FEDER TEC2015-68752-RKNOWAVESSpanish Education and Research Ministry REN 2001-3833 CGL2005-05789-C02-02/ANT POL2006-08663 CGL2008-01660National Science Foundation (NSF) ANT-0230094 NSF-1521855European project MED-SUV - European Union's Seventh Framework Program 308665European project EPOSEuropean Union (EU) 67656

    Numerical approximations of second-order matrix differential equations using higher-degree splines

    Full text link
    Many studies of mechanical systems in engineering are based on second-order matrix models. This work discusses the second-order generalization of previous research on matrix differential equations dealing with the construction of approximate solutions for non-stiff initial problems Y 00(x) = f(x, Y (x), Y 0 (x)) using higher-degree matrix splines without any dimensional increase. An estimation of the approximation error for some illustrative examples are presented by using Mathematica. Several MatLab functions have also been developed, comparing, under equal conditions, accuracy and execution times with built-in MatLab functions. Experimental results show the advantages of solving the above initial problem by using the implemented MatLab functions.The authors wish to thank for financial support by the Universidad Politecnica de Valencia [grant number PAID-06-11-2020].Defez Candel, E.; Tung ., MM.; Solis Lozano, FJ.; Ibáñez González, JJ. (2015). Numerical approximations of second-order matrix differential equations using higher-degree splines. Linear and Multilinear Algebra. 63(3):472-489. https://doi.org/10.1080/03081087.2013.873427S472489633Loscalzo, F. R., & Talbot, T. D. (1967). Spline Function Approximations for Solutions of Ordinary Differential Equations. SIAM Journal on Numerical Analysis, 4(3), 433-445. doi:10.1137/0704038Al-Said, E. A. (2001). The use of cubic splines in the numerical solution of a system of second-order boundary value problems. Computers & Mathematics with Applications, 42(6-7), 861-869. doi:10.1016/s0898-1221(01)00204-8Al-Said, E. A., & Noor, M. A. (2003). Cubic splines method for a system of third-order boundary value problems. Applied Mathematics and Computation, 142(2-3), 195-204. doi:10.1016/s0096-3003(02)00294-1Kadalbajoo, M. K., & Patidar, K. C. (2002). Numerical solution of singularly perturbed two-point boundary value problems by spline in tension. Applied Mathematics and Computation, 131(2-3), 299-320. doi:10.1016/s0096-3003(01)00146-1Micula, G., & Revnic, A. (2000). An implicit numerical spline method for systems for ODEs. Applied Mathematics and Computation, 111(1), 121-132. doi:10.1016/s0096-3003(98)10111-xDefez, E., Soler, L., Hervás, A., & Santamaría, C. (2005). Numerical solution ofmatrix differential models using cubic matrix splines. Computers & Mathematics with Applications, 50(5-6), 693-699. doi:10.1016/j.camwa.2005.04.012Defez, E., Hervás, A., Soler, L., & Tung, M. M. (2007). Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling, 46(5-6), 657-669. doi:10.1016/j.mcm.2006.11.027Ascher, U., Pruess, S., & Russell, R. D. (1983). On Spline Basis Selection for Solving Differential Equations. SIAM Journal on Numerical Analysis, 20(1), 121-142. doi:10.1137/0720009Brunner, H. (2004). On the Divergence of Collocation Solutions in Smooth Piecewise Polynomial Spaces for Volterra Integral Equations. BIT Numerical Mathematics, 44(4), 631-650. doi:10.1007/s10543-004-3828-5Tung, M. M., Defez, E., & Sastre, J. (2008). Numerical solutions of second-order matrix models using cubic-matrix splines. Computers & Mathematics with Applications, 56(10), 2561-2571. doi:10.1016/j.camwa.2008.05.022Defez, E., Tung, M. M., Ibáñez, J. J., & Sastre, J. (2012). Approximating and computing nonlinear matrix differential models. Mathematical and Computer Modelling, 55(7-8), 2012-2022. doi:10.1016/j.mcm.2011.11.060Claeyssen, J. R., Canahualpa, G., & Jung, C. (1999). A direct approach to second-order matrix non-classical vibrating equations. Applied Numerical Mathematics, 30(1), 65-78. doi:10.1016/s0168-9274(98)00085-3Froese, C. (1963). NUMERICAL SOLUTION OF THE HARTREE–FOCK EQUATIONS. Canadian Journal of Physics, 41(11), 1895-1910. doi:10.1139/p63-189Marzulli, P. (1991). Global error estimates for the standard parallel shooting method. Journal of Computational and Applied Mathematics, 34(2), 233-241. doi:10.1016/0377-0427(91)90045-lShore, B. W. (1973). Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential. The Journal of Chemical Physics, 59(12), 6450-6463. doi:10.1063/1.1680025ZHANG, J. F. (2002). OPTIMAL CONTROL FOR MECHANICAL VIBRATION SYSTEMS BASED ON SECOND-ORDER MATRIX EQUATIONS. Mechanical Systems and Signal Processing, 16(1), 61-67. doi:10.1006/mssp.2001.1441Flett, T. M. (1980). Differential Analysis. doi:10.1017/cbo978051189719

    Massive Abelian Gauge Symmetries and Fluxes in F-theory

    Get PDF
    F-theory compactified on a Calabi-Yau fourfold naturally describes non-Abelian gauge symmetries through the singularity structure of the elliptic fibration. In contrast Abelian symmetries are more difficult to study because of their inherently global nature. We argue that in general F-theory compactifications there are massive Abelian symmetries, such as the uplift of the Abelian part of the U(N) gauge group on D7-branes, that arise from non-Kahler resolutions of the dual M-theory setup. The four-dimensional F-theory vacuum with vanishing expectation values for the gauge fields corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the effective four-dimensional gauged supergravity resulting from F-theory compactifications in the presence of the Abelian gauge factors including the effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page

    TeV scale mirage mediation in NMSSM

    Full text link
    We study the next-to-minimal supersymmetric standard model. We consider soft supersymmetry breaking parameters, which are induced by the mirage mediation mechanism of supersymmetry breaking. We concentrate on the mirage mediation, where the so-called mirage scale is the TeV scale. In this scenario, we can realize the up-type Higgs soft mass of O(200) GeV, while other masses such as gaugino masses and stop masses are heavy such as 1 TeV or more. Cancellation between the effective \mu-term and the down-type Higgs soft mass ameliorates the fine-tuning in the electroweak symmetry breaking even for \mu=O(500) GeV. The mixing between the doublet and singlet Higgs bosons is suppressed by (\lambda/\kappa)/tan\beta. Then the lightest doublet Higgs mass naturally reaches 125 GeV lifted by the new quartic coupling. The higgsino and singlino are light and their linear combination is the lightest superparticle.Comment: 24 pages, 24 figures, Numerical analysis is replaced with the version calculated by NMSSMTools. Comments and references are added on the suppressed doublet-singlet mixing and cases in which the 125 GeV boson is the 2nd lightest CP-even scalar. The version accepted by JHE

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM

    Get PDF
    We analyze the constraints placed on individual, flavor diagonal CP-violating phases in the minimal supersymmetric extension of the Standard Model (MSSM) by current experimental bounds on the electric dipole moments (EDMs) of the neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases that are individually highly constrained by current EDM bounds, and we explore how these phases and correlations among them are constrained by current EDM limits. We also analyze the prospective implications of the next generation of EDM experiments. We point out that all other CP-violating phases in the MSSM are not nearly as tightly constrained by limits on the size of EDMs. We emphasize that a rich set of phenomenological consequences is potentially associated with these generically large EDM-allowed phases, ranging from B physics, electroweak baryogenesis, and signals of CP-violation at the CERN Large Hadron Collider and at future linear colliders. Our numerical study takes into account the complete set of contributions from one- and two-loop EDMs of the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg 3-gluon operator, and dominant 4-fermion CP-odd operator contributions, including contributions which are both included and not included yet in the CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM, which provides the complete set of two-loop electroweak diagrams contributing to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Could a Factor That Does Not Affect Egg Recognition Influence the Decision of Rejection?

    Get PDF
    Rejection of the parasitic egg is the most important defence of hosts against brood parasites. However, this response is variable among and within species, and egg discrimination is not always followed by egg rejection. Low risk of parasitism and high risk of rejection costs may lead to the acceptance of the parasitic egg even if it has been previously recognized. The main aim of this paper is to answer a relevant question: can a single egg trait provoke the acceptance of an experimental egg previously recognized as foreign? Increased egg mass should hamper the ejection of an egg that has been discriminated because ejection of a heavy egg may imply higher rejection costs for hosts. We have tested this prediction by experimentally parasitizing natural nests of Common Blackbirds (Turdus merula) with non-mimetic model eggs of different mass (heavy, normal-weight, and light) while controlling for potential confounding factors such as egg size and colour. Our results showed that blackbirds more frequently accepted heavy eggs, even when previously recognized. This differential acceptance may be related to insufficient motivation to assume the higher costs that the ejection of a heavy egg could impose.Financial support has been provided by the Consejería Economía, Innovación, Ciencia y Empleo, Junta de Andalucia (research project CVI-6653)

    A 119-125 GeV Higgs from a string derived slice of the CMSSM

    Get PDF
    The recent experimental hints for a relatively heavy Higgs with a mass in the range 119-125 GeV favour supersymmetric scenarios with a large mixing in the stop mass matrix. It has been shown that this is possible in the constrained Minimal Super-symmetric Standard Model (CMSSM), but only for a very specific relation between the trilinear parameter and the soft scalar mass, favouring A ≈ −2m for a relatively light spectrum, and sizable values of tan β. We describe here a string-derived scheme in which the first condition is automatic and the second arises as a consequence of imposing radiative EW symmetry breaking and viable neutralino dark matter in agreement with WMAP constraints. More specifically, we consider modulus dominated SUSY-breaking in Type II string compactifications and show that it leads to a very predictive CMSSM-like scheme, with small departures due to background fluxes. Imposing the above constraints leaves only one free parameter, which corresponds to an overall scale. We show that in this construction A=−3/2–√m≃−2mA=−3/2m≃−2m and in the allowed parameter space tan β ≃ 38 − 41, leading to 119 GeV < mh  < 125 GeV. The recent LHCb results on BR(Bs → μ+μ−) further constrain this range, leaving only the region with mh ~ 125. GeV. We determine the detectability of this model and show that it could start being probed by the LHC at 7(8) TeV with a luminosity of 5(2) fb−1, and the whole parameter space would be accessible for 14 TeV and 25 fb−1. Furthermore, this scenario can host a long-lived stau with the right properties to lead to catalyzed BBN. We finally argue that anthropic arguments could favour the highest value for the Higgs mass that is compatible with neutralino dark matter, i.e., mh-125 GeV

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE
    corecore